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Abstract

Recent flood events around the world have brought the
importance of understanding flood behavior to the forefront.
Synthetic aperture radar (SAR) or multispectral (MS) im-
agery is commonly used to perform flood extent segmen-
tation. The SenlFloodsll dataset provides Sentinel-1 (S1)
and Sentinel-2 (S2) imagery which are hand-labeled for wa-
ter bodies. Recent papers have approached this problem
differently, applying machine learning (ML) or fully con-
volutional neural networks (FCNNs) to this problem. How-
ever, they are not directly comparable because of differences
in evaluation metrics.

We selected four feature sets based on state-of-the-art
performances from these papers. We then train U-Net mod-
els from scratch using grid-search hyperparameter opti-
mization and compare the performance of the four feature
sets with each other. We were able to achieve Intersec-
tion over Union (IoU) results without tuning on the test
data set that exceeded the baseline presented in the origi-
nal SenlFloodsl 1 paper, which relies solely on raw S1 and
S2 bands.

Our findings showed that while FCNNs are unable to
outperform traditional ML models with an engineered fea-
ture space, engineered features do improve the performance
of FCNNs. The results highlight the importance of lever-
aging domain knowledge of spectroscopy in satellite flood
segmentation problems.

1. Introduction/Background/Motivation

Flooding is a widespread threat around the world, and
it is becoming more prevalent due to climate change. In
2024, there were numerous historically destructive flooding
events, such as Hurricanes Beryl, Helene, and Milton in the
United States and devastating floods in Afghanistan, Pak-
istan, Spain, Brazil, and several other regions. With flood-
ing events becoming more frequent and more intense, it is

crucial to understand which areas are affected by floods;
this can help first responders, insurers, scientists, and others
prioritize specific areas to use limited time and resources
during a disaster.

Currently, there is satellite surveillance over regions that
are susceptible to flooding; satellite images can cover wide
areas of floodwaters. However, there are often difficulties
in determining from satellite images whether a given area
is flooded. For example, there may be clouds that obscure
a satellite’s view of an area, or it may be difficult to distin-
guish floodwaters from a permanent body of water. This is
where deep learning can help.

We built and trained a U-Net model to build a segmenta-
tion map from a satellite image to quickly identify flooded
areas. We aim to achieve or improve upon previous flood-
water segmentation work in [1], [3], and [4], each of which
used FCNNs or ML models.

The data used for training came from Sen1Floods11 [1].
SenlFloods11, created by Cloud to Street to train and test
deep learning algorithms on flooding segmentation for S1
satellite images, is a georeferenced dataset of images taken
by the ESA’s Sentinel-1 and Sentinel-2 satellites for 11
flooding events around the world in 2016-19 (collected from
the Dartmouth Flood Observatory). The 512x512 nonover-
lapping image chips depict both flooded and unflooded ar-
eas; they often include permanent bodies of water. In ad-
dition to raw S1 and S2 imagery, some of the chips are
hand-labeled to indicate surface water (ground truth) us-
ing permanent water data labels from the JRC’s Landsat
satellite. The dataset contains three layers of GeoTIFF files
(QC for hand-labeled chips, S1 for raw S1 SAR sensor data
with two bands, and S2 for raw S2 optical data across 13
channels). The dataset is imbalanced, with only 446 hand-
labeled chips and 4385 weakly-labeled chips; the weakly-
labeled chips only have S1 bands as their input spectrum.
The dataset is accessible through a Google Cloud storage
bucket. The dataset’s authors also trained and tested several
FCNN models using this data and published their training
and validation code on GitHub. Both the dataset and the
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Figure 1. U-Net architecture using the brain-segmentation PyTorch model (Source: Ronneberger, 2015) [5]

code were valuable resources for building and training our
own U-Net model.

2. Approach

In this project, we utilize hand labeled flood data and
enhance it with handcrafted features derived from Sentinel-
1 and Sentinel-2 bands. We then train a U-Net model for
segmenting flooded regions. Our objective is to integrate
techniques proposed in three different research papers to
develop a model that achieves superior performance, par-
ticularly in terms of Intersection over Union (IoU). IoU is a
critical metric for flood detection, as it balances distinguish-
ing between flooded and unflooded regions, which makes
this metric effective for imbalanced datasets.

The first paper we referenced is Sen1Floods11 [1], which
introduced a publicly available georeferenced flood inun-
dation dataset. This dataset is ideal for high-quality flood
inundation training, validation, and testing, as it includes
data from 11 distinct global flood events and comprises 446
manually labeled image chips. These chips are divided into
training, validation, and testing sets using a random 60-20-
20 split. The dataset provides information for both Sentinel-

1 (S1) and Sentinel-2 (S2) bands.

The second paper that informed our project is by Kon-
apala et al. [3], which emphasizes that handcrafted fea-
tures derived from raw Sentinel-1 (S1) and Sentinel-2 (S2)
band values provide more robust results for flood inunda-
tion mapping, particularly under environmental challenges
such as cloud cover.

The third paper, by Iselborn et al. [4], highlights the
significance of feature representation for flood inundation
mapping using conventional machine learning algorithms.
It also introduces formulas for calculating three novel hand-
crafted features to enhance training. We have used the fol-
lowing three formulas.

Normalized Difference Water Index (NDWI) uses the
NIR and green bands from S2.

GREEN — NIR
NDOWIl = — i — 1
GREEN + NIR M

Automated Water Extraction Index (AWEI) uses the
SWIR band and the green band from S2 data.
AWEI = 4 x (GREEN — SWIR-1)

1 (2)
—7 % (NIR + 11 x SWIR-2)
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Figure 2. Visualization of learning procedure steps - from left to right: Sentinel-2 Channel B1 (Coastal) raw image in ToA (top of atmo-
sphere) reflectance units x 10,000; Model segmentation output (green="not water’, blue="water’); model output overlaid on raw satellite
image; hand-labeled ground truth chip (green="water’, blue="not water’, red="not labeled’)

Hue, Saturation, and Value (HSV) color space values
are calculated from S2 band values through multiple steps:
SWIR2, NIR, red values are assigned to Red, Green, and
Blue (RGB) values respectively.
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2.1. Data and Features Used

For our experiments, we utilized all 446 manually la-
beled chips from the SenlFloodsll [I] dataset. Hand-
crafted features were added to this dataset, and the model
was trained using various combinations of these feature
sets: Sentinel-1 (S1) only, HSV only, a combination of S1
+ AWEI + NDWI + HSV, and a combination of S1 + AWEI
+ NDWL

2.2. U-Net Model

We replaced the ResNet50 model from the
SenlFloods11 [I] project code with a U-Net model,
anticipating that U-Net, a fully convolutional neural net-
work (FCNN) explicitly designed for image segmentation,
would deliver superior performance in this context. To
implement U-Net, we incorporated the version from Buda’s
2021 [2] brain-segmentation-pytorch repository into the
starter code, modifying it to operate within the existing
training and validation loops.

Our U-Net architecture (Figure 1) includes four encoder
blocks (encoderl, encoder2, encoder3, encoder4), each
containing two convolutional layers followed by batch nor-
malization. Downsampling is applied after each block us-

ing max-pooling layers. A bottleneck layer acts as a fea-
ture extractor, bridging the encoder and decoder sections.
The decoder is symmetric to the encoder, consisting of four
decoder blocks (decoderl, decoder2, decoder3, decoder4).
Upsampling is performed using transposed convolutions,
while skip connections concatenate the upsampled features
with their corresponding encoder features to preserve spa-
tial details. The output is passed through a 1x1 convolu-
tional layer to reduce the feature maps to the desired num-
ber of channels, with a sigmoid activation function applied
to generate pixel-wise probabilities.

2.3. Code Changes

We used the starter code provided in the
SenlFloods11 [I] paper, replacing the original model
with the U-Net model described in Section 2.3. Addition-
ally, we implemented code to calculate handcrafted features
from Sentinel-2 (S2) data. The training code was modified
to handle the feature combinations outlined in Section 2.2.

We also updated the code to support multiple channels
and adjusted the processing, augmentation, and loading
functions to adapt to the number of input channels based
on the feature sets. This included applying normalization
based on the means and standard deviations of the channels.

Furthermore, we added code to estimate tunable weight
parameters for weighted precision, recall, and F1 metrics in
the training, validation, and test loops, as well as incorpo-
rating hyperparameter tuning and visualizations.

2.4. Problems Encountered

We anticipated challenges with getting the model to
learn, due to large differences in the model architecture and
number of parameters. We did initially encounter issues
with the model not learning, and attempted multiple fixes
that did not work. The actual fix required was for a logical
error in the code that handles multiple channels.

We also expected challenges with tuning the hyperpa-
rameters related to class imbalance. This is due to the pos-
sibility of differences between training and validation data.



Features our model Konapala [3] | Iselborn [4] |

AWEI+NDWI+HSV 0.7661 - 0.9394

S1+HSV 0.6745 0.9 -

S1+AWEI+NDWI 0.8086 0.88 -

S1+AWEI+NDWI+HSV | 0.8150 0.9 0.941

Table 1. F1-score comparison
Features max  valid | last valid | test baseline | max  valid | max  valid | test tuned
baseline baseline tuning tuned

AWEI+NDWI+HSV 0.7292 0.6555 0.6451 0.7038 0.4100 0.3760
S1+HSV 0.5754 0.4840 0.5204 0.5488 0.2900 0.2730
S1+AWEI+NDWI 0.7444 0.7036 0.6945 0.7922 0.7275 0.6757
S1+AWEI+NDWI+HSV | 0.7219 0.6621 0.6973 0.6306 0.6171 0.6060

Table 2. IoU (Intersection Over Union) results summary

However, we came into a bigger problem of cross-validated
runs not being replicated in the training runs, even after set-
ting the seed. This was addressed by reducing the number
of hyperparameters tuned in each run.

3. Experiments and Results
3.1. Hypothesis

We hypothesize that our U-Net models, tuned or other-
wise, will perform better than the mean IoU results pre-
sented in [1]. The primary objective of [I] is to present
a new dataset, therefore achieving higher performance than
[1] will serve as a sanity check.

Our objective is to recreate the U-Net used by [3] (based
on the U-Net designed for biomedical image segmentation
in [5]), evaluate its baseline efficacy on each of four chosen
feature representations (two from [4], and two from [3]),
and compare our results.

We do not have significant cause to predict whether our
repurposed U-Net model will perform better or worse than
the models in [4] and [3], but hypothesize that hyperparam-
eter tuning will succeed in improving our models beyond
our baseline performance runs.

[4] concludes that a gradient boosting model can out-
perform neural network models in this task. [4] tries to
compare with [3] due to similar feature sets, but had diffi-
culties due to [3] not using the typical IoU metric. We aim
to verify this claim.

3.2. Metrics

One of the primary motivations for our approach was
the discrepancy between the evaluation metrics and pre-
sented results of the supporting works. In the original
SenlFloods11 dataset source paper ( [1]), the authors use
mean accuracy, mean IoU (intersection over union), and

omission/commission error metrics. [4] evaluates their re-
sults using mean/total accuracy, mean/total IoU, precision,
recall, and Fl-score. Results from [3] specifically use
“Modified K-fold based median performance metrics” [3],
which cannot be directly compared to the mean- and total-
based metrics presented by [1] and [4].

We evaluated our models primarily using IoU. Accuracy,
precision, recall, and F1-score were also calculated. F1-
scores are included for secondary comparison with the re-
sults in [3]. It is important to note that accuracy is mislead-
ing due to the label imbalance.

3.3. Experimentation

One driver of the design of our hyperparameter tuning
grid was the need to address the large class imbalance in-
herent in the dataset. Our default loss function was the
cross-entropy function, and our implementation allowed for
passing a weight parameter which would turn the loss func-
tion into weighted cross-entropy. The original biomedical
U-Net paper ( [5]) calculates this weight parameter using
the inverse of the frequency of each class in the training
data. The total class frequency ratio (0 to 1, or “not water”
to “water”) was 9.5201, and the mean class frequency ra-
tio was 1521.6. Approximate inverses of these values were
taken as weight parameters, so that, for example, a weight
parameter of [1, 1000] would indicate that a prediction of
class 1 (“water”’) would be weighted 1000 times higher than
class 0 (“not water”).

Another big factor in choosing hyperparameters was
the need to avoid overfitting of the training data, espe-
cially considering the very small size of the hand-labeled
SenlFloods11 dataset (446 ‘chips’ of which only 60% were
designated as training data). The weight decay parameter
of our AdamW optimizer, adjustments to batch size, and
the conversion of all batch normalization of the module to
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Figure 3. Baseline AWEI+NDWI+HSV model validation and
training curves.
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Figure 4. Tuned AWEI+NDWI+HSV model validation and
training curves.

group normalization, were used to increase regularization.
Other model specifications of the U-Net were kept constant
to maintain hardware stability for training, due to limited
GPU RAM.

3.4. Results

According to the visualizations of the segmentation out-
puts and the ground truth, as seen in Figure 2, the U-Net
model performed fairly well at determining the boundaries
of water in most cases. The segmentation output often
resembled patterns in the raw satellite images and in the
ground truth images. However, differences between clas-
sified flood extent boundaries to the label cap our model
performance.

Results in [4] showed a large variance in model perfor-
mance based on the choice of test dataset. While our F1-
score results in Table 1 are worse than [3], this is within
the range of variation for the metric. Our model also sets
cross-entropy loss as the criterion, whereas [3] optimizes
for Fl-score. This comparison also shows the importance
of the choice of performance metric to optimize for.

What we found in hyperparameter tuning was that the
models were very sensitive to starting seeds and initializa-
tion values. This can be seen in Table 2, where tuned models
struggle to outperform the baseline models. Difficulties in
tuning are also shown in Figures 3 and 4. 3 started with
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Figure 6. Tuned S1+AWEI+NDWI model validation and train-
ing curves with gradual hyper parameter change.

good model performance, while 4 had poor initialization
and model performance that were not overcome through
training. Impact of initialization eclipses hyperparameters
in the current setup.

Our primary experimental method of hyperparameter
tuning with a focus on addressing class imbalance and
avoiding overfitting was not successful. After this, our ap-
proach shifted to making longer training runs. The results
of this strategy can be seen in Figures 5 and 6 where we only
adjusted the weight hyperparameter for cross-entropy loss.
This improved the validation IoU 0.7036 of the base run to
0.7275 for the tuned run. As long as the learning rate was
set reasonably conservatively, training on larger number of
epochs was beneficial to model performance.

The gradual adjustment of hyperparameters was met
with incremental success, but it did not resolve the erratic
and wide-ranging fluctuations of the validation IoU curves.
This behavior, which can be seen in the validation curves of
Figures 3, 4, 5, and 6, indicates that the optimizer starts to
overfit after a small number of epochs. The current setup
uses AdamW as the optimizer, but it is not typically rec-
ommended for small datasets. SGD (stochastic gradient de-
scent) with momentum was tested as an alternative. The
resulting training and validation curves are shown in 7. We
can see that, compared to Figures 3, 4, 5, and 6, the valida-
tion curve fluctuation in 7 is much smaller, which indicates



—— training losses
—— training accuracy
—— training iou

—— valid losses

—— valid accuracy
— valid iou

0.8

0.6

0.4

0.2

0.0

0 50 100 150 200 250

Figure 7. Baseline AWEI+NDWI+HSV model, with optimizer
changed to SGD with momentum, validation and training curves

less training and validation volatility. A smaller gap be-
tween training and validation IoU suggests less overfitting,
which indicates that SGD is the more suitable optimizer for
future runs.

3.5. Conclusion

Our first hypothesis was that our models would outper-
form the results from [!]. [!] present mean IoU results
of 0.4084 for Sentinel-2 channels and 0.3871 for Sentinel-
1 channels. Our test scores for base models, for all four
combinations of feature representations, outperformed the
results from [1], confirming that our first hypothesis and
our sanity check were correct and satisfied.

Regarding our second hypothesis, which was that our
models would improve after hyperparameter tuning, our
experimentation was mostly unsuccessful. As discussed
in previous subsections, volatility and sensitivity factors
played a large role in model variance between runs.
This meant that performance improvements expected from
model tuning were challenging to fully replicate in the fi-
nal runs which involved longer training times from larger
number of epochs.

Our results did not match the performance of the
gradient-boosted model in [4]. [4] presents a distribu-
tion of IoU values, with a mean of 0.7998, a minimum of
0.5468, and a maximum of 0.9713. Our results show a peak
test IoU performance of 0.6973. Our best model IoU per-
forms within the range expected by [4], but still falls short
of their average. Our Fl-score of 0.815 also fell short of
the 0.9 from [3], suggesting greater room for improvement
when it comes to model tuning and architecture.

Our primary findings confirm the findings of [4]: fea-
ture representations improve the base performance of mod-
els versus inputting raw Sentinel-1 and Sentinel-2 channels.
An important secondary finding is that, for a small dataset
should use an optimizer like SGD with momentum instead
of AdamW to instability during training. Based on com-
paring our results so far with [4], we can conclude that in
the task of flood classification with this dataset, it is plausi-
ble that a neural network-based approach could potentially

outperform classical classifiers.

4. Future Work

Future work in flood inundation modeling using a small
hand-labeled dataset could benefit from adopting optimiz-
ers like Stochastic Gradient Descent (SGD) as it general-
izes well with limited datasets. SGD could be paired with
fine-tuned learning rates and momentum parameters to bet-
ter handle the limited data and batch sizes.

A gradual hyperparameter tuning strategy of adjusting
key hyperparameters like learning rate, weight decay and
network depth could ensure steady progress towards achiev-
ing a higher IoU while ensuring sudden performance degra-
dation is minimized. Employing plot-based hyperparameter
search techniques to monitor the gap between training and
validation scores could facilitate the early detection of over-
fitting or underfitting, optimizing model performance.

Future work can also leverage weakly-labeled datasets
to access larger volumes of data, addressing the limitations
posed by the scarcity of flood dataset with labels. This
would improve model generalizability. Another way to in-
crease the data volume is to leverage flood extents created
by catastrophe model vendors and attach S1 and S2 data to
them. These commercially created labels are of comparable
quality as the hand-generated labels in the SenlFloods11
dataset.

Additionally, exploring the use of wider and shallower
network architectures with varying batch and group sizes
presents an opportunity to enhance modeling approaches.
The type of FCNNs chosen as the encoder and decoder are
also expected to impact model performance. Additional hy-
perparameter search can be conducted on model structure,
model size and batch/group sizes to search for the most opti-
mal model structure suited for the flood segmentation prob-
lem.

5. Work Division

As shown in Table 3, our team dynamics were well-
structured and balanced, with each member contributing
specialized expertise to ensure comprehensive project de-
velopment. Liu worked on feature set creation, addi-
tional feature calculation, and hyperparameter tuning. Ro-
manelli managed functionality setup, U-Net modifications
for multi-channel inputs, class imbalance, and optimization
issues. Srivastava focused on hyperparameter tuning, grid
search, and fine-tuning models. Toutin contributed through
visualization and training.



Student Name

Contributed Aspects

Details

Liu

Romanelli

Srivastava

Toutin

Create feature sets and experimentation,
Abstract, General polish and proofreading

Initial Functionality Setup, Experiment
Hypotheses and Hyperparameter Tuning,
Analysis, Results Interpretation, Section 3

Hyperparameter tuning and Experimenta-
tion, Sections 2 and 4

Visualization, Experimentation, Section 1,
Table 1, Appendix, proofreading

Load data from both S1 and S2 to calculate and com-
bine additional features from S2 bands and group fea-
ture sets Hyperparameter tuning on one of the feature sets
(S1+AWEI+NDWI+HSV). Adding test metrics to runs.
Incorporated U-Net code from [2], modified all net
outputs in train, valid, and test loops; Added neces-
sary functionality for notebook to work with more than
just 2 input channels, including modifying the data aug-
mentation and processing classes/functions, and calcu-
lating channel means and standard deviations of train-
ing dataset for a dynamic number of channels, for nor-
malization; Proposed parameters to address class imbal-
ance, estimated tunable weight parameters for weighted
cross-entropy loss function by calculating inverse of class
label frequencies in training data; Added precision, re-
call, and F1 metrics to outputs of training, validation,
test loops; added option for changing default initializa-
tion of Conv2d weights in UNet model; resolved a code
issue that was plaguing our performance for a significant
portion of the project duration; in the last 24 hours be-
fore submission, discovered that the SGD with momen-
tum optimizer resolves a major ongoing volatility prob-
lem - implemented an experiment, tested, gathered the
evidence/measurements, and incorporated the results into
an extension/continuation of a greater gradual hyperpa-
rameter adjustment strategy (AWEI+NDWI+HSV)
Implemented code for hyperparameter grid search to
optimize the model and report the best combination
of hyperparameters; Modified U-Net code for experi-
menting with the additional dropout layers as a way
to mitigate overfitting of model showing high training
IOU; Trained and Fine Tuned the model for feature set
(S1+AWEI+NDWTI). Experimented with gradual changes
in hyper parameter values and achieved a tuned parame-
ter run performance slightly better than the base parame-
ter run.

Visualized segmentation results. Trained and fine-tuned
the model on a feature set (S1+HSV).
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Appendix

Additional materials are presented in this section.
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